
www.manaraa.com

XWRAP: An XML-enabled Wrapper Construction

System for Web Information Sources�

Ling Liu, Calton Pu, Wei Han

Oregon Graduate Institute of Science and Technology

flingliu,calton,weihang@cse.ogi.edu

Abstract

The amount of useful semi-structured data on the web continues to grow at a stunning pace. Often
interesting web data are not in database systems but in HTML pages, XML pages, or text �les.
Data in these formats is not directly usable by standard SQL-like query processing engines that
support sophisticated querying and reporting beyond keyword-based retrieval. Hence, the web users
or applications need a smart way of extracting data from these web sources. One of the popular
approaches is to write wrappers around the sources, either manually or with software assistance, to
bring the web data within the reach of more sophisticated query tools and general mediator-based
information integration systems.

In this paper, we describe the methodology and the software development of an XML-enabled
wrapper construction system - XWRAP for semi-automatic generation of wrapper programs. By
XML-enabled we mean that the metadata about information content that are implicit in the original
web pages will be extracted and encoded explicitly as XML tags in the wrapped documents. In
addition, the query-based content �ltering process is performed against the XML documents. The
XWRAP wrapper generation framework has three distinct features. First, it explicitly separates
tasks of building wrappers that are speci�c to a Web source from the tasks that are repetitive for any
source, and uses a component library to provide basic building blocks for wrapper programs. Second,
it provides inductive learning algorithms that derive or discover wrapper patterns by reasoning about
sample pages or sample speci�cations. Third and most importantly, we introduce and develop a two-
phase code generation framework. The �rst phase utilizes an interactive interface facility to encode
the source-speci�c metadata knowledge identi�ed by individual wrapper developers as declarative
information extraction rules. The second phase combines the information extraction rules generated
at the �rst phase with the XWRAP component library to construct an executable wrapper program
for the given web source. The two-phase code generation approach exhibits a number of advantages
over existing approaches. First, it provides a user-friendly interface program to allow users to generate
their information extraction rules with a few mouse clicks. Second, it provides a clean separation
of the information extraction semantics from the generation of procedural wrapper programs (e.g.,
Java code). Such separation allows new extraction rules to be incorporated into a wrapper program
incrementally. Third, it facilitates the use of the micro-feedback approach to revisit and tune the
wrapper programs at run time. We report the performance of XWRAP and our experiments by
demonstrating the bene�t of building wrappers for a number of Web sources in di�erent domains
using the XWRAP generation system.

�This research is partially supported by DARPA contract MDA972-97-1-0016 and a grant from Intel.

1

www.manaraa.com

1 Introduction

The extraordinary growth of the Internet and World Wide Web has been fueled by the ability it gives content
providers to easily and cheaply publish and distribute electronic documents. Companies create web sites to make
available their online catalogs, annual reports, marketing brochures, product speci�cations. Government agencies
create web sites to publish new regulations, tax forms, and service information. Independent organizations create
web sites to make available recent research results. Individuals create web sites dedicated to their professional
interest and hobbies. This brings good news and bad news.

The good news is that the bulk of useful and valuable HTML-based Web information is designed and published
for human browsing. This has been so successful that many Net businesses rely on advertisement as their main
source of income, o�ering free email services, for example. The bad news is that these \human-oriented" HTML
pages are di�cult for programs to parse and capture. Furthermore, the rapid evolution of Web pages requires
making corresponding changes in the programs accessing them. In addition, most of the web information sources
are created and maintained autonomously, and each o�ers services independently. Interoperability of the web
information sources remains the next big challenge.

A popular approach to address these problems is to write wrappers to encapsulate the access to sources. For
instance, the most recent generation of information mediator systems (e.g., Ariadne [20], CQ [24, 25], Internet
Softbots [23], TSIMMIS [14, 16]) all include a pre-wrapped set of web sources to be accessed via database-like
queries. However, developing and maintainingwrappers by hand turned out to be labor intensive and error-prone.

In this paper, we propose a systematic approach to build an interactive system for semi-automatic construction
of wrappers for Web information sources, called XWRAP. The goal of our work can be informally stated as
the transformation of \di�cult" HTML input into \program-friendly" XML output, which can be parsed and
understood by sophisticated query services, mediator-based information systems, and agent-based systems. A
main technical challenge is to discover boundaries of meaningful objects (such as regions and semantic tokens) in
a Web doucment, to distinguish the information content from their metadata description, and to recognize and
encode the metadata explicitly in the XML output. Our main contribution here is to provide a set of interactive
mechanisms and heuristics for generating information extraction rules with a few clicks, and a way to combine
those information extraction rules into a method for generating an executable wrapper program.

This is not the �rst time the problem of information extraction from a Web document has been addressed. [6, 17]
discover object boundaries manually. They �rst examine the documents and �nd the HTML tags that separate
the objects of interest, and then write a program to separate the object regions. [2, 28, 5, 20, 13, 22, 23, 29]
separate object regions with some degree of automation. Their approaches rely primarily on the use of syntactic
knowledge, such as speci�c HTML tags, to identify object boundaries.

Our approach di�ers from these proposals in two distinct ways. First, we introduce a two-phase code generation
approach for wrapper generation. The �rst phase utilizes an interactive interface facility that communicates
with the wrapper developer and generates information extraction rules by encoding the source-speci�c metadata
knowledge identi�ed by the individual wrapper developer. In contrast, most of the existing approaches require the
wrapper developers to write information extraction rules by hand using a domain-speci�c language. The second
phase utilizes the information extraction rules generated at the �rst phase and the XWRAP component library
to construct an executable wrapper program for the given web source. The two-phase code generation approach
presents a number of advantages over existing approaches:

1. it provides a user-friendly interface program to allow users to generate their information extraction rules
with a few clicks.

2. it provides a clean separation of the information extraction semantics from the generation of procedural
wrapper programs (e.g., Java code). Such separation allows new extraction rules to be incorporated into a
wrapper program incrementally.

3. it facilitates the use of the micro-feedback approach to revisit and tune the wrapper programs at run time.

Second, we divide the task of identifying object boundaries into two steps: region identi�cation and semantic
token identi�cation (see Section 4). Once a Web document is fetched, XWRAP build a parse tree with HTML tags

2

www.manaraa.com

as internal nodes and information content as leaf nodes. The structure of the tree follows the nested structure
of start- and end-tags. Users may highlight a speci�c word or phrase or sentence as the starting point of a
meaningful region. XWRAP will then apply the heuristics on nearest region tags to derive the type of the region.
Then the heuristics for identifying features of a speci�c region are applied. Similarly, users may identify semantic
tokens of interest with a few clicks and �re learning algorithms to detect repetitive token patterns within a region.
Finally, we provide a way to combine the region extraction rules and semantic token extraction rules generated
to determine the hierarchical structure of the regions or semantic tokens of interest. We applied the XWRAP
approach to four di�erent application areas using Web documents obtained from ten di�erent sites, which together
contained thousands of objects (section 5). The results were uniformly good, gaining 100% accuracy in all sites
examined (see Section 5). Furthermore, we want to leverage on standards as much as possible, thus choosing XML
as our output format. The development of XWRAP presents not only a software tool but also the methodology for
developing an XML-enabled, feedback-based, interactive wrapper construction facility that generates value-added
wrappers for Internet information sources.

Before explaining the details of our approach, we would like to note that semi-automated wrapper construction
is just one of the challenges in building a scalable and reliable mediator-based information integration system
for Web information sources. The other important problems include resolving semantic heterogeneity among
di�erent information sources, e�cient query planning for gathering and integrating the requested information
from di�erent Web sites, and intelligent caching of retrieved data, to name a few. The focus of this paper is solely
on wrapper construction.

The rest of the paper proceeds as follows. We overview the methodology for semi-automatic wrapper construction
in Section 2. We describe the XWRAP technology for information extraction and for constructing wrappers for
web information sources in Section 3 and Section 4. We demonstrate the e�ectiveness of our wrapper construction
techniques through an analysis of our experimental results in Secton 5. We conclude the paper with a discussion
on related work in Section 6 and a summary and an outline of future directions in Section 7.

2 The Design Framework: An Overview

2.1 Architecture

The architecture of XWRAP for data wrapping consists of four components - Syntactical Structure Normalization,
Information Extraction, Code Generation, Program Testing and Packaging. Figure 1 illustrates how the wrapper
generation process would work in the context of data wrapping scenario.

Syntactical Structure Normalization is the �rst component and also called Syntactical Normalizer, which
prepares and sets up the environment for information extraction process by performing the following three tasks.
First, the syntactical normalizer accepts an URL selected and entered by the XWRAP user, issues an HTTP
request to the remote server identi�ed by the given URL, and fetches the corresponding web document (or so
called page object). This page object is used as a sample for XWRAP to interact with the user to learn and
derive the important information extraction rules. Second, it cleans up bad HTML tags and syntactical errors.
Third, it transforms the retrieved page object into a parse tree or so-called syntactic token tree.

Information Extraction is the second component, which is responsible for deriving extraction rules that use
declarative speci�cation to describe how to extract information content of interest from its HTML formatting.
XWRAP performs the information extraction task in three steps - (1) identifying interesting regions in the
retrieved document, (2) identifying the important semantic tokens and their logical paths and node positions in
the parse tree, and (3) identifying the useful hierarchical structures of the retrieved document. Each step results
in a set of extraction rules speci�ed in declarative languages.

Code Generation is the third component, which generates the wrapper program code through applying the
three sets of information extraction ruls produced in the second step. A key technique in our implementation
is the smart encoding of the semantic knowledge represented in the form of declarative extraction rules and
XML-template format (see Section 4.3). The code generator interpret the XML-template rules by linking each

3

www.manaraa.com

Syntactical Structure
Normalication

Repairing
Syntax Errors

Generating
Parse Tree

Information Extraction

Extraction Token Structure
Extraction

Semantic

Extraction

Parse tree

Region Hierarchical

Rulebase
XWRAP

Extraction rules

Code Generation
(Data Wrapping)

Generating Wrapper
Program Code

Structural
Transformation
(Learn By Example)

S-token
extraction
rules

Region
extraction
rules

H-structure
extraction
rules

Generating

Fetch Rules

Testing and Packaging

Wrapper ProgramWrapper Program
ReleaseTesting

Source-specific Wrapper Program

Enter a URL

Extraction Knowledge + Feedbacks

Testing Request
+ Feedbacks

The Wrapper Generator System XWrap

Remote Doc

Remote document fetching rules

Figure 1: XWRAP system architecture for data wrapping

executable components with each type of rules. We found that XML gives us great extensibility to add more
types of rules seamlessnessly. As a byproduct, the code generator also produces the XML representation for the
retrieved sample page object.

Testing and Packing is the fourth component and the �nal phase of the data wrapping process. The toolkit
user may enter a set of alternative URLs of the same web source to debug the wrapper program generated by
running the XWRAP automated testing module. For each URL entered for testing purpose, the testing module
will automatically go through the syntactic structure normalization and information extraction steps to check
if new extraction rules or updates to the existing extraction rules are derived. In addition, the test-monitoring
window will pop up to allow the user to browse the test report. Whenever an update to any of the three sets of
the extraction rules occurs, the testing module will run the code generation to generate the new version of the
wrapper program. Once the user is satis�ed with the test results, he or she may click the release button (see
Figure 2) to obtain the release version of the wrapper program, including assigning the version release number,
packaging the wrapper program with application plug-ins and user manual into a compressed tar �le.

The XWRAP architecture for data wrapping is motivated by the design decision fortaking advantage of declar-
ative language for speci�cation of information extraction knowledge, for exploring reusable functionality, and for
separating data wrapping from functional wrapping.

2.2 Phases and Their Interactions

As the wrapper-generation process is so complex that it is not reasonable, either from a logical point of view or
from an implementation point of view, to consider the construction process as occurring in one single step. For
this reason, we partition the wrapper construction process into a series of subprocesses called phases, as shown in
Figure 3. A phase is a logically cohesive operation that takes as input one representation of the source document
and produces as output another representation.

XWRAP goes through six phases to construct and release a wrapper. Tasks within a phase run concurrently
using a synchronized queue; each runs its own thread. For example, we decide to run the task of fetching a
remote document and the task of repairing the bad formatting of the fetched document using two concurrently
synchronous threads in a single pass of the source document. The task of generating a syntactic-token parse tree
from an HTML document requires as input the entire document; thus, it cannot be done in the same pass as the
remote document fetching and the syntax reparation. Similar analysis applies to the other tasks such as code

4

www.manaraa.com

Figure 2: A screenshot of the Hierarchical Structure Extraction Window

generation, testing, and packaging.

The interaction and information exchange between any two of the phases is performed through communication
with the bookkeeping and the error handling routines. The bookkeeping routine of the wrapper generator collects
information about all the data objects that appear in the retrieved source document, keeps track of the names
used by the program, and records essential information about each. For example, a wrapper needs to know how
many arguments a tag expects, whether an element represents a string or an integer. The data structure used to
record this information is called a symbol table.

The error handler is designed for the detection and reporting errors in the fetched source document. The error
messages should allow the wrapper developer to determine exactly where the errors have occurred. Errors can
be encountered at virtually all the phases of a wrapper. Whenever a phase of the wrapper discovers an error, it
must report the error to the error handler, which issues an appropriate diagnostic message. Once the error has
been noted, the wrapper must modify the input to the phase detecting the error, so that the latter can continue
processing its input, looking for subsequent errors. Good error handling is di�cult because certain errors can mask
subsequent errors. Other errors, if not properly handled, can spawn an avalanche of spurious errors. Techniques
for error recovery are beyond the scope of this paper.

In the subsequent sections, we focus our discussion primarily on information extraction component of the XWRAP,

5

www.manaraa.com

Fetch Rules

Source Document

Enter a URL

Code Generator

Extraction

Generating Parse Tree

Fetching and Repairing

Information

XML-enabled Wrapper

Extraction
Rules

Remote Doc.

Wrapper Program

Code Testing

 Software Packaging
XWrap

B
oo

kk
ee

pi
ng

 R
ou

tin
e

E
rror

H
andler

Wrapper Code

Extraction Rules

Syntac-token Parse Tree

Repaired Source Doc.

Wrapper CodeWrapper Code

Figure 3: Data wrapping phases and their interactions

and provide a walkthrough example to illustrate how the three sets of information extraction rules are identi-
�ed, captured, and speci�ed. As the syntactical structure normalization is a necessary preprocessing step for
information extraction, a brief description of the syntactic normalizer is also presented.

3 Preprocessing: Syntactical Structure Normalization

The Syntactical Structure Normalization process is carried out in two phases, as shown in Figure 3. The �rst
phase consists of two concurrently synchronous tasks - remote document retrieval and syntax reparation. The
second phase is responsible for generating a syntactic-token parse tree, of the repaired source document.

3.1 Fetching a Web Page

The Remote Document Retrieval component is responsible for generating a set of rules that describe the list of
interface functions and parameters as well as how they are used to fetch a remote document from a given web
source. The list of interface functions include the declaration to the standard library routines for establishing
the network connection, issuing an HTTP request to the remote web server through a HTTP Get or HTTP Post

method, and fetching the corresponding web page. Other desirable functions include building the correct URL
to access the given service and pass the correct parameters, and handling redirection, failures, or authorization if
necessary.

For each wrapper, there is a set of retrieval rules. Each rule speci�es the name of the rule, the list of parameters
it takes, the built-in functions GetURL or PostURL, the type of the URL protocols like http, �le, and ftp, the
protocol-speci�c remote fetch method (such as HTTP GET and HTTP POST), and the corresponding URL. XWRAP
will automatically take care of packing the URL request parameters in the correct way as required by the HTTP GET

and HTTP POST) protocol variants. In the case of an PostURL request, the correct construction of the parameter

6

www.manaraa.com

object needs to be deduced from the web form where the URL request originates. The HTTP speci�cation requires
that the POST parameters be submitted in the order they appear in the form of the page.

Assume we want to construct a wrapper for noaa current weather report web site, and the URL entered at the
start of XWRAP is http://weather.noaa.gov/cgi-bin/currwx.pl?cccc=KSAV, asking for the current weather
in Savannah. Figure 4 shows a remote document retrieval rule derived from the given URL. It uses the XWRAP
library function URLGet(...). The regular expression speci�ed by Match(K[A-Z]f3g) speci�es that the location
code is restricted to four capital alphabet characters, starting with the character \K". When a web site o�ers
more than one type of search capability, more than one retrieval rules may need to be generated.

Remote Document Fetch Rules(XWRAP-weather.noaa.gov)::

GetURL(String location-code)

f
Protocol: HTTP;

Method: GET;

URL: http://weather.noaa.gov/cgi-bin/currwx.pl?cccc=?location-code;

ParaPattern: location-code, match(K[A-Z]f3g);
g

Figure 4: Example rules for fetching remote documents

3.2 Repairing Bad Syntax

As soon as the �rst block of the source document is being fetched over, the syntax repairing thread begins.
It runs concurrently with the Remote Document Retrieval thread, and repairs bad HTML syntax. This step
inserts missing tags, removes useless tags, such as a tag that either starts with <! Pr is an end tag that has no
corresponding start-tag. It also repairs end tags in the wrong order or illegal nesting of elements. We describe
each type of HTML errors in a normalization rule. The same set of normalization rules can be applied to all
HTML documents. Our HTML syntax error reparation module can clean up most of the errors listed in HTML
TIDY [27, 30].

3.3 Generating a Syntactic Token Tree

Once the HTML errors and bad formatting are repaired, the clean HTML document is fed to a source-language-
compliant tree parser, which parses the block character by character, carving the source document into a sequence
of atomic units, called syntactic tokens. Each token identi�ed represents a sequence of characters that can be
treated as a single syntactic entity. The tree structure generated in this step has each node representing a syntactic
token, and each tag node such as TR represents a pair of HTML tags: a beginning tag <TR> and an end tag </TR>.
Di�erent languages may de�ne which is called a token di�erently. For HTML pages, the usual tokens are paired
HTML tags (e.g., <TR>, </TR>), singular HTML tags (e.g.,
, <P>), semantic token names, and semantic token
values.

Example 1 Consider the weather report page for Savannah, GA at the national weather service site (see Fig-
ure 5). and a fragment of HTML document for this paper in Figure 6.

Figure 7 shows a portion of the HTML tree structure, corresponding to the above HTML fragment, which is
generated by running a HTML-compliant tree parser on the Savannah weather source page. In this portion of the
HTML tree, we have the following six types of tag nodes: TABLE, TR, TD, B, H3, FONT, and a number of semantic

7

www.manaraa.com

Figure 5: An example weather report page at the nws.noaa.gov site

token nodes at leaf node level, such as Maximum Tempature, Minimum Tempature, 84.9(29.4), 64.0(17.8), etc.

Important to note is that every syntactic token parse tree is organized as follows. All non-leaf nodes are tags and
all leaf nodes are text strings, each in between a pair of tags. XWRAP de�nes a set of tree node manipulation func-
tions for each tree node object, including getNodeType(node id), getNodeName(node id), getNodeId(String
NN), and getNodePath(node id), in order to obtain the node type - tag node or leaf (value) node, the node name
- tag name or text string, the node identi�er for a given string, or the path expression from the root to the given
node. We use dot notation convention to represent the node path. A single-dot expression such as nodeA.nodeB
refers to the parent-child relationship and a double-dot such as nodeA..nodeB refers to the ancestor-descendent
relationship between nodeA and nodeB.

4 The Methodology for Information Extraction

The main task of the information extraction component is to explore and specify the structure of the retrieved
document (page object) in a declarative extraction rule language. For an HTML document, the information
extraction phase takes as input a parse tree generated by the syntactical normalizer. It �rst interacts with the

8

www.manaraa.com

<TABLE><TR><TD COLSPAN=3><H3>Maximum and Minimum Temperatures

</H3> </TD></TR><TR><TD ALIGN=CENTER BGCOLOR="#FFFFFF"><FONT FACE=

"Arial,Helvetica">Maximum
Temperature
F(C)</TD><TD ALIGN=CENTER BGCOLOR=

"#FFFFFF">Minimum
Temperature
F(C)

</TD><TD></TD></TR><TR><TD ALIGN=CENTER>82.0(27.8)

</TD><TD ALIGN=CENTER>62.1(16.7)</TD><TD><FONT FACE=

"Arial, Helvetica">In the 6 hours preceding Oct 29, 1998 - 06:53 PM EST / 1998.10.29 2353

UTC</TD></TR><TR><TD ALIGN=CENTER>80.1(26.7)</TD>

<TD ALIGN=CENTER>45.0(7.2)</TD><TD><FONT FACE="Arial,

Helvetica">In the 24 hours preceding Oct 28, 1998 - 11:53 PM EST / 1998.10.28 0453 UTC

</TD></TR><TR><TD COLSPAN=3><HR SIZE=1 NOSHADE WIDTH="100%"></TD></TR></TABLE>

Figure 6: An HTML fragment of the weather report page at nws.noaa.gov site

TD

H3

COLOR

FACE

B

TD

FONT
FACE

FONT

FONT

FONT
COLOR

B

TD TD TD TD TD

FONT
FACE
FONT

empty
string

FACE
FONT

FACE

FONT FACE

F(C)Tempature

Maximum

Maximun and
Minimum

Temperatures BRBR
Minimum

BR BR

Tempature F(C)

82.0
(27.8)

62.1

TR[0] TR[1] TR[2]

In
(16.7) the

preceding
Oct 29,

1998-06:53

B

6 hours

TABLE[2]

Figure 7: A fragment of the HTML tree for the Savannah weather report page

user to identify the semantic tokens (a group of syntactic tokens that logically belong together) and the important
hierarchical structure. Then it annotates the tree nodes with semantic tokens in comma-delimited format and
nesting hierarchy in context-free grammar. More concretely, the information extraction process involves three
steps; each step generates a set of extractions rules to be used by the code generation phase to generate wrapper
program code.

� Step 1: Identifying regions of interest on a page
This step is performed via an interactive interface, which lets the XWRAP user guide the identi�cation of
important regions in the source document, including table regions, paragraph regions, bullet-list regions,
etc. The output of this step is the set of region extraction rules that can identify regions of interest from
the parse tree.

� Step 2: Identifying semantic tokens of interest on a page.
This step is carried out by an interactive program, called semantic-token extractor, which allows a wrapper
developer to walk through the tree structure generated by the syntactic normalizer, and highlight the
semantic tokens of interest in the source document page. The output of this step is the set of semantic
token extraction rules that can locate and extract the semantic tokens of interest, and a comma-delimited
�le containing all the element type and element value pairs of interest.

� Step 3: Determining the nesting hierarchy for the content presentation of a page.

9

www.manaraa.com

This step is performed by the hierarchical structure extractor, which infers and speci�es the nesting struc-
ture of the sections of a web page (document) being wrapped. Such hierarchical speci�cation will be used
for content-sensitive information extraction from the source document(s). The outcome of this step is the
set of hierarchical structure extraction rules speci�ed in a context-free grammar, describing the syntactic
structure of the source document page.

Important to note is that, for structured data sources such as database sources or XML documents, the information
extraction process can be conducted automatically, following the table schema or the XML tags. However, this
is not the case for unstructured or semi-structured information sources such as HTML documents or text �les,
because semi-structured or unstructured data is provided with no self-describing properties. Therefore, our goal
is to perform the information extraction with minimal user interaction.

In summary, the semantic token extractor analyses the parse tree structure of the source document and its
formatting information, and guesses the semantic tokens of interest on that page based on a set of token-recognition
heuristics. Similarly, the hierarchical structure extractor also uses the formatting information and the source-
speci�c structural rules to hypothesize the nesting structure of the page. The heuristics used for identifying
important regions and semantic tokens in a page and the algorithms used to organize interesting regions of the
source page into a nested hierarchy are an important contribution of this work. We describe them in more detail
below.

4.1 Region Extraction: Identifying Important Regions

The region extractor begins by asking the user to highlight the tree node that is the start tag of an important
element. Then the region extractor will look for the corresponding end tag, identify and highlight the entire
region. In addition, the region extractor computes the type and the number of sub-regions and derives the set
of region extraction rules that capture and describe the structure layout of the region. For each type of region,
such as the table region, the paragraph region, the text section region, and the bullet list region, a special set of
extraction rules are used. For example, for regions of the type TABLE, Figure 8 shows the set of rules that will be
derived and �nalized through interactions with the user.

The rule Tree Path speci�es how to �nd the path of the table node. The rule Table Area �nds the number of
rows and columns of the table. The rule Effective Area de�nes the e�ective area of the table. An e�ective area
is the sub-region in which the interesting rows and columns reside. By di�erentiating the e�ective area from a
table region, it allows us, for example, to remove those rows that are designed solely for spacing purpose. The
fourth rule Table Style is designed for distinguishing vertical tables where the �rst column stands for a list of
attribute names from horizontal tables where the �rst row stands for a list of attribute names. The last rule
getTableInfo describes how to �nd the table name by giving the path and the node position in the parse tree.

Example 2 Consider the weather report page for Savannah, GA at the national weather service site (see Fig-
ure 5), and a fragment of HTML parse tree as shown in Figure 7). To identify and locate the region of the table
node TABLE[2], we apply the region extraction rules given in Figure 8 and obtain the following source-speci�c
region extraction rules for extracting the region of the table node TABLE[2].

1. By applying the �rst region extraction rule, XWRAP can identify the tree path for TABLE[2] to be
HTML.BODY.TABLE[0].TR[0].TD[4].TABLE[2].

2. To identify the table region, we �rst need the user to identify the row tag TR and the column tag TD of
the given region of the TABLE[2] node. Based on the row tag and column tag, the region extractor may
apply the second extraction to deduce that the table region of TABLE[2] consists of maximum 5 rows and
maximum 3 columns.

3. The extraction rule Effective Areawill be used to determine the e�ective area of the table node TABLE[2].
It requires the user's input on the row start index rowSI = 2, the row end index rowEI = 4, the column
start index colSI = 1 and the column end index colEI = 3. With these index information, the region

10

www.manaraa.com

Region Extraction Rules(String source name)::

Tree Path(String node id, String node path)f
setTableNode = node id;

node path = getNodePath(node id); g

Table Area(String node id, String TN, String CN, Integer rowMax, Integer colMax)f
setRowTag(node id) = ?TN;

setColTag(node id) = ?CN;

rowMax = getNumOfRows(node id);

colMax = getNumOfCols(node id); g

Effective Area(String node id, String rowSI, String rowEI, String colSI, String colEI)f
setRowStartIndex(node id) = ?rowSI;

setRowEndIndex(node id) = ?rowEI;

setColStartIndex(node id) = ?colSI;

setColEndIndex(node id) = ?colEI;

getEffectiveArea(node id); g

Table Style(String node id)f
if (ElementType(child(child(node id, 1), 1)) = `Attribute'

if ElementType(child(child(node id, 1), 2)) = `Attribute')

setVertical(node id) = 1, setHorizontal(node id) = 0;

else

setHorizontal(node id) = 1, setVertical(node id) = 0; g

getTableInfo(String node id, String TNN, String TN, String TP)f
setTableNameNode(node id) = TNN;

TN = getTableName(TNN);

TP = getNodePath(TNN); g

Figure 8: Extraction rules for a table region in an HTML page

extractor can easily identify the e�ective table region, the area that does not include the row for table name
and the empty row.

4. By applying the rule Table Style, we can deduce that this table is a horizontal table, with the �rst row
as the table schema.

5. To determine how to extract the table name node, we need the user to highlight the table name node in
the parse tree window (recall Figure 2). Based on the user's input, XWRAP can infer the path expression
for the table name node is
TABLE[2].TR[0].TD[0].H3[0].FONT[0].FONT[0].
Then by applying the �fth region extraction rule getTableInfo, we can extract the table name. Note that
the function getTableName(node id) calls the the following semantic token extraction rule to obtain the
actual string of the table name (see Section 4.2 for details on semantic token extraction).

<ST_extract> ST_extract(String TN)

<rule_exp>

extract TN = TABLE[2].TR[0].TD[0].getChildNode(1).getStoken()

where TABLE[2].TR[0].TD[0].getChildNode(1).getNodeType() = `tag'

and TABLE[2].TR[0].TD[0].getChildNode(1).getNodeName() = `H3';

</rule_exp>

</ST_extract>

11

www.manaraa.com

The path of this table name node can be computed directly by invoking
getNodePath(getNodeId(`TABLE[2]')), which returns

HTML.BODY.table[0].TR[0].TD[4].TABLE[2].TR[0].TD[0].H3[0].FONT[0].FONT[0].

It is important to note that the design of our region extraction rules is robust in the sense that the extraction
rules are carefully designed to compute the important information (such as the number of tables in a page, the
number of attributes in a table, etc.) at runtime. For example, let us assume that the nws.noaa.gov wrapper was
constructed using the example page from a Portland weather report at a speci�c time, which happens to contain
only three tables instead of the normal layout of four tables. The �rst table contains only 7 rows instead of the
normal layout of 9 rows. When the very same wrapper runs to extract the page of Savannah, GA, our wrapper
will automatically deduce that the page has four tables and the �rst table has 9 rows, rather than assuming all
the weather report at nws.noaa.gov obey the same format. Furthermore, our region extraction rules are de�ned in
a declarative language and therefore independent of the implementation of the wrapper code. This higher level of
abstraction allows the XWRAP wrappers to enjoy better extensibility and ease in maintenance and in adapting
to changes at the source.

4.2 Semantic Token Extraction: Finding Important Semantic Tokens

In general each semantic token is a sub-string of the source document that is to be treated as a single logical unit.
There are two kinds of token: speci�c strings such as HTML tags (e.g., TABLE, FONT), and semantic tokens such as
those strings in between a pair of HTML tags. To handle both cases, we shall treat a token as a pair consisting of
two parts: a token name and a token value. For a tag token such as FONT, the tag name is FONT and the tag value
is the string between a beginning tag and its closing tag . A semantic token such as Maximum and

Minimum Tempature F(C) or Current Weather Conditions in between the start and end tags of the tag token
FONT will be treated as either a name token or a value token, depending on the context or the user's choice. Similar
treatment applies to the token such as Savannah, Savannah International Airport, GA, United States. In
addition, a help function - getStoken(node id) is provided for semantic token extraction rules. It extracts and
concatnates all text strings from the leaf nodes of the subtree identi�ed by the given node id.

The main task of a semantic token extractor (S-token extractor for short) is to �nd semantic tokens of interest,
de�ne extraction rules to locate such tokens, and specify such tokens in a comma-delimited format1, which will
be used as input in the code generation phase. The �rst line of a comma-delimited �le contains the name of the
�elds that denote the data. A special delimiter should separate both �eld names and the actual data �elds. The
XWRAP system supports a variety of delimiters such as a comma (,), a semicolon (;), or a pipe (j). To identify
important semantic tokens, the S-token extractor examines successive tree nodes in the source page, starting from
the �rst leaf node not yet grouped into a token. The S-token extractor may also be required to search many
nodes beyond the next token in order to determine what the next token actually is.

Example 3 Consider a fragment of the parse tree for the Savannah weather report page shown in Figure 7. From
the region extraction step, we know that the leaf node name Maximum and Minimum Temperatures of the left
most branch TR[0] is the heading of a table region denoted by the node TABLE[2]. Also based on the interaction
with the user, we know that the leaf nodes of the subtree anchored at TABLE[2].TR[1].TD[0] should be treated
as a semantic token with the concatenation of all three leaf node names, i.e., the string Maximum Tempature F(C),
as the token name; and the leaf nodes of the tree branch TABLE[2].TR[2].TD[0], i.e., the string 84.9 (29.4),
is the value of the corresponding semantic token. Thus a set of semantic token extraction rules can be derived
for the rest of the subtrees anchored at TR[3] and TR[4], utilizing the function getStoken().

<ST_extract>

ST_extract(String ST_name[], String ST_val[][])

1A comma-delimited format is also called delimited text format. It is the lowest common denominator for data inter-

change between di�erent classes of software and applications.

12

www.manaraa.com

<!-- Start of the repetition -->

<? XG-Iteration-XG ``Start"?>

<loop> integer row_i = 3, 4

<loop> integer col_j = 0,1,2

<rule_exp>

extract ST_val[row_i,col_j] = ~TABLE[2].TR[row_i].TD[col_j].getStoken()

where ~TABLE[2].TR[1].TD[col_j].getStoken() = ST_name[col_j];

</rule_exp>

</loop>

</loop>

</ST_extract>

By traversing the entire tree of the node TABLE[2] and applying the derived extraction rules, we may extract all
the token values for each given token name in this region. Similarly, by traversing the entire tree of Savannah
page, the semantic-token extractor produces as output a comma-delimited �le for the Savannah weather report
page. Figure 9 shows the portion of this comma-delimited �le that is related to TABLE[2] node. The �rst line
shows the name of the �elds (the rows) that are being used. The second and third lines are two data records.

......

Maximum Tempature F(C); Minimum Tempature F(C); <TD></TD>

82.0(27.8);62.1(16.7);In the 6 hours preceding Oct 29,

1998 - 6:53 PM EST / 1998.10.29 2353 UTC

80.1(26.7);45.0(7.2);In the 24 hours preceding Oct 28,

1998 - 11:53 PM EST / 1998.10.28 0453 UTC

......

Figure 9: A fragment of the comma-delimited �le for the Savannah weather report page

4.3 Hierarchical Structure Extractor: Obtaining the Nesting Hierarchy of the Page

The goal of the hierarchical structure extractor is to make explicit the meaningful hierarchical structure of the
original document by identifying which parts of the regions or token streams should be grouped together. More
concretely, this step determines the nesting hierarchy (syntactic structure) of the source page, namely what kind
of hierarchical structure the source page has, what are the top-level sections (tables) that forms the page, what
are the sub-sections (or columns, rows) of a given section (or table), etc.

Similar to the semantic token extractor, the hierarchical structure can be extracted in a semi-automatic fashion
for a larger number of pages. By semi-automatic we mean that the task of identifying all sections and their
nesting hierarchy is accomplished through minimal interaction with the user. The following simple heuristics are
most frequently used by the hierarchy extractor to make the �rst guess of the sections and the nesting hierarchy
of sections in the source document to establish the starting point for feedback-driven interaction with the user.
These heuristics are based on the observation that the font size of the heading of a sub-section is generally smaller
than that of its parent section.

� Identifying all regions that are siblings in the parse tree, and organizing them in the sequential order as
they appear in the original document.

� Obtaining a section heading or a table name using the paired header tags such as <H3>, </H3>.

13

www.manaraa.com

� Inferring the nesting hierarchy of sections or the columns of tables using font size and the nesting structure
of the presentation layout tags, such as <TR>, <TD>, <P>, <DL>, <DD>, and so on.

We develop a hierarchical structure extraction algorithm that, given a page with all sections and headings identi-
�ed, outputs a hierarchical structure extraction rule script expressed in an XML-compliant template for the page.
Figure 10 shows the fragment of the XML template �le corresponding to the part of a NWS weather report page
shown in Figure 7. It de�nes the nesting hierarchy, annotated with some processing instructions.

......

<Maximum and Minumum Temperatures>

<Description>Maximum and Minimum Temperatures</Description>

<!-- Start of the repetition -->

<?XG-Iteration-XG ``Start"?>

<Maximum and Minimum Temperatures Child>

<Maximum Temperature>

<Description>MaximumTemperature F(C)</Description>

<Value><?XG-InsertField-XG ``Maximum Tempature"></Value>

</Maximum Temperature>

<Minimum Temperature>

<Description>MinimumTemperature F(C)</Description>

<Value><?XG-InsertField-XG ``Minimum Temperature"></Value>

</Minimum Temperature>

<TD>

<Description></Description>

<Value><?XG-InsertField-XG ``TD"></Value>

</TD

</Maximum and Minumum Temperatures Child>

<?XG-Iteration-XG ``End"?>

<!-- End of the repetition -->

</Maximum and Minumum Temperatures>

......

Figure 10: A fragment of the hierarchical structure extraction rule for nws.noaa.gov current weather

report page

The use of XML templates to specify the hierarchical structure extraction rule facilitates the code generation
of the XWRAP for several reasons. First, XML templates are well-formed XML �les that contain processing
instructions. Such instructions are used to direct the template engine to the special placeholders where data
�elds should be inserted into the template. For instance, the processing instruction XG-InsertField-XG has
the canonical form of XG-InsertField-XG is <?XG-InsertField-XG ``FieldName"?>. It looks for a �eld with
a speci�ed name \FieldName" in the comma-delimited �le and inserts that data at the point of the processing
instruction. Second, an XML template also contains a repetitive part, called XG-Iteration-XG, which is necessary
for describing the nesting structure of regions and sections of a web page. The XG-Iteration-XG processing
instruction determines the beginning and the end of a repetitive part. A repetition can be seen as a loop in
classical programming languages. After the template engine reaches the \End" position in a repetition, it takes
a new record from the delimited �le and goes back to the \Start" position to create the same set of XML tags as
in the previous pass. New data is inserted into the resulting XML �le.

Due to the fact that the heuristics used for identifying sections and headings may have exceptions for some
information sources, it is possible for the system to make mistakes when trying to identify the hierarchical
structure of a new page. For example, based on the heuristic on font size, the system may identify some words or

14

www.manaraa.com

phases as headings when they are not, or fail to identify phases that are headings, but do not conform to any of
the pre-de�ned regular expressions. We have provided a facility for the user to interactively correct the system's
guesses. Through a graphical interface the user can highlight tokens that the system misses, or delete tokens
that the system chooses erroneously. Similarly, the user can correct errors in the system generated grammar that
describes the structure of the page.

The XWRAP code generator generates the wrapper code for a chosen web source by applying the comma-delimited
�le (as shown in Figure 9 for the running example), the region extraction rules (as given in Example 2), and the
hierarchical structure extraction rules (see Figure 10), all described using the XWRAP's XML template-based
extraction speci�cation language. Due to the space limitation, the details on the language is omitted here.

Finally, to satisfy the curiosity of some readers, we show in Appendix A a fragment of the XML document
transformed from the original HTML page by the XWRAP nws.noaa.gov wrapper program, which was generated
semi-automatically using XWRAP toolkit for the NWS web source.

5 Experimental Results

5.1 Representative Web Sites

Due to the rapid evolution of the web, there are few agreed upon standards with respect to the evaluation of web
pages. Existing standard benchmarks such as the SPECweb96, Webstone 2.X, and TPC-W impose a standard
workload to measure server performance. Although it is an interesting challenge to collect a representative set
of web sites for comparing the performance of web data source wrappers, that task is beyond the scope of this
paper. For our analysis, we have chosen 4 web sites that are representative in our opinion:

1. NOAA weather site shown in Figures 2 and Figure 5. NOAA pages combine multiple small tables (vertical
or horizontal) with some running text. Number of random samples collected: 10 di�erent pages.

2. Buy.com, a commercial web site [www2.buy.com] with many advertisements and long tables. This is a
web site with frequent updates of content and changes of format. It is an example of challenging sites
for wrapper generators. Web pages used in our evaluation are generated dynamically by a search engine.
Pages used include book titles that contain keywords such as \JDBC" and \college life". Number of random
samples: 20 pages.

3. Stockmaster.com, another commercial site [www.stockmaster.com] with advertisements, graphs, and tables.
This is an example of sites with extremely high frequency updates. Pages used in our evaluation are also
generated dynamically, including stock information on companies such as IBM and Microsoft. Number of
random samples: 21 pages.

4. CIA Fact Book (http://www.odci.gov/cia/publications/factbook), a well-known web site used in several
papers [28, 5]. Although infrequently updated, it is included here for comparison purposes. Number of
random samples: 267 pages.

5.2 Evaluation of Wrapper Generation

The �rst part of experimental evaluation of XWRAP concerns the wrapper generation process. Since the use of
wrapper generator depends on many factors outside of our control, we avoid making any scienti�c claims of this
evaluation result. The experiments are included so readers may gain an intuitive feeling of the wrapper generator
usage.

We measured the approximate time it takes for an expert wrapper programmer (in this case a graduate student) to
generate wrappers for the above 4 web sites. Since production-use wrappers are typically written and maintained
by experienced professional programmers, this is a common case. The results are shown in Figure 11. We already
have several improvements on the GUI that should shorten the wrapper generation process.

15

www.manaraa.com

Data Generation Revision Extraction Rules XML Template Accuracy

Source Time(minutes) (times) Length(lines) Length(lines) Verification

NOAA 40 2 114 153 100%

CIA Factbook 25 1 237 23 100%

Buy.com 16 0 102 46 100%

Stockmaster 23 1 90 46 100%

Figure 11: XWRAP Performance Results

Our initial experience tells us that the main bottleneck in the wrapper generation process is the number of
iterations needed to achieve a signi�cant coverage of the web site. The main advantage of our wrapper is the
level of robustness. The wrappers generated by XWRAP can handle pages that have slightly di�erent structure
(such as extra or missing �elds (bullets or sections) in a table (a text section) than the example pages used for
generating the wrapper. However, when the pages are signi�cantly di�erent from the example pages used in the
wrapper generation process, the wrapper will have to be re�ned.

Our experience also tells us that the higher quality of the sample pages used for generating wrappers, the
higher accuracy one would get. Since an XWRAP wrapper is generated \by example", the choice of a simplistic
example page would produce too simple a wrapper for more complex pages. Typically, as more complex pages
are encountered, the wrapper is re�ned to handle the new situation. Ideally, one would �nd the most complex
example web page of the site, and use it to generate the \nearly complete" wrapper for that site. Developing
mechanisms for selecting high quality sample Web pages is a topic of our ongoing research.

5.3 Evaluation of Wrapper Execution

Our current implementation has been built for extensibility and ease of software maintenance. Consequently, we
have chosen software components with high functionality and postponed the optimization of data structures and
algorithms to a later stage. One example of such trade-o� is the use of Java Swing Class library to manage all
important data structures such as the document tree. This choice minimizes the work for visualization of these
data structures, which is more important than raw performance at this stage of XWRAP development.

All measurements were carried out on a dedicated 200MHz Pentium machine (jambi.cse.ogi.edu). The machine
runs Windows NT 4.0 Server and there is only one user in the system. All the XWRAP software is written in
Java. The main Java package used is Swing.

Data Avg. vs. Document Document Result XML Doc/XML

Source St. Dev. Size(byte) Tree Length Size(byte)

NOAA Average 31135 1145 7593 4.1

St. Dev. 465 23 42 0.1

CIA Factbook Average 16115 834 18981 0.9

St. Dev. 4503 188 5623 0.1

Buy.com Average 44075 832 5172 9.6

St. Dev. 11871 232 2014 3.4

Stockmaster Average 21218 523 370 57.3

St. Dev. 1137 32 11 2.4

Figure 12: Performance Statistics w.r.t. source document size and result XML size

Figure 12 shows the �rst characterization of web page samples. We see that NOAA and Stockmaster.com have
high uniformity (low standard deviation) in document size, due to their form-oriented page content (standard
weather reports and standard stock price reports). The CIA Fact Book has medium standard deviation in

16

www.manaraa.com

document size, since the interesting facts vary somewhat from place to place. The Buy.com pages have high
variance in document size, since the number of books available for each selection topic varies greatly.

Also fromFigure 12 we see that the wrapper-generated document tree length is proportional to the input document
size. However, this may not be true for the result XML �le size. We call wrappers that ignore a signi�cant portion
of the source pages (in this case, the advertisements in Buy.com and Stockmaster.com) low selectivity wrappers.
In our case, Buy.com and Stockmaster.com are low selectivity due to heavy advertisement, and their Input-Doc-
Size/Output-XML-Size ratio is high (9.6 and 57.3, respectively). Purely informational sites such as NOAA and
CIA Fact Book tend to have high selectivity (4.1 and 0.9, respectively).

An expected, but important observation is about consistent performance of the wrappers, in terms of successfully
capturing the information from source pages. First, form-oriented input pages such as NOAA and Stockmas-
ter.com have high uniformity (low standard deviation) in the result XML �le size. Second, for variable-sized
pages in Buy.com and CIA Fact Book, we calculated the correlation between the input document size and the
output XML �le size (from the data table not shown in the paper due to space constraints). The correlation is
strong: 1.00 for Buy.com and 0.98 for CIA Fact Book. This shows consistent performance of wrappers in mapping
input to output.

Data Avg. vs. Fetch Expand Tree Extraction Generate Total Correlation

Source St. Dev. Time(ms) Times(ms) Times(ms) Times(ms) Time(ms) Doc/Time

NOAA Average 4391 8531 3841 1128 18520 0.45

St. Dev. 1032 1055 228 116 1636

CIA Factbook Average 1907 11916 4709 3902 23043 0.93

St. Dev. 265 3366 1175 1297 5776

Buy.com Average 6908 7777 2748 838 18909 0.66

St. Dev. 4333 1553 1439 287 6602

Stockmaster Average 1972 5489 1412 468 9973 0.35

St. Dev. 489 453 497 121 1131

Figure 13: Performance of Wrappers w.r.t. Fetch, Expand, Extract, and Result Generate time

Figure 13 shows the summary of execution (elapsed) time of wrappers. It is comforting that form-oriented pages
(NOAA and Stockmaster.com) take roughly the same time (standard deviation at about 10% of total elapsed
time) to process. This is the case for both a high selectivity site such as NOAA and a low selectivity site such as
Stockmaster.com. For variable-sized pages in Buy.com and CIA Fact Book, we calculated the correlation between
the input document size and total elapsed processing time: 0.66 for Buy.com and 0.93 for CIA Fact Book. The
higher correlation of CIA Fact Book is attributed to its high selectivity (same input and output size), and lower
correlation of Buy.com to its lower selectivity (input almost 10 times the output size). This shows the consistent
performance of wrappers in elapsed time.

Figure 13 also shows that most of the execution time (more than 90%) is spent in four components of the wrapper:
Fetch, Expand, Extract, and Generate. The �rst component, Fetch, includes the network access to bring the raw
data and the initial parsing. Since we have no control over the network access time, the fetch time has high
variance. This is con�rmed by the lowest variance of the smallest documents (CIA Fact Book) and highest
variance of largest documents (Buy.com).

The second component, Expand, consumes the largest portion of execution time. It is a utility routine that
invokes Swing to expand a tree data structure for extraction. This appears to be the current bottleneck due to
the visualization oriented implementation of Swing, and it is a candidate for optimization.

The third component, Extract, also uses the Swing data structure to do the Information Extraction phase (Sec-
tion 4). This phase does more useful work than Expand, but it is also a candidate for performance tuning when
we start the optimization of the Expand component.

The fourth component, Generate, produces the output XML �le. It is clearly correlated to the size of the output
XML �le. Except for the extremely short results from Stockmaster.com (consistently at about 370 bytes), the

17

www.manaraa.com

execution time of Generate for the other three sources is between 5 and 6 bytes of XML generated per 1 ms.

6 Related Work

Recently considerable attention has been received on generating wrappers for web information sources and provid-
ing database like queries over semi-structured data through wrappers. We below summarize some of the popular
projects and compare them with our XWRAP system.

TSIMMIS [16] developed a logical template-based approach to generating wrappers for web sources and other
types of legacy systems. This approach provides a way of rapidly constructing wrappers by example but it could
require a large number of examples to specify a single source.

The Internet robot project at University of Washington [12] developed an Internet comparison shopping agent
that can automatically build wrappers for web sites. Since the proposed approach focuses more on pages that
contain items for sale, much stronger assumptions are made about the type of information to be used to guess the
underlying structure. As a result, their wrapper language is not very expressive, and the system is quite limited
in terms of the types of pages for which it can generate wrappers.

Another endeavor on wrapper construction at University of Washington is made by Kushmerick et al. [22, 23]
using inductive learning techniques. The proposed approach builds a program that extracts information from a
web page based on a set of pre-de�ned extractors. The advantage of this approach is that the resulting wrappers
will be more robust to inconsistencies across multiple-document pages. However, their approach could not be
used to generate wrappers for more complex pages such as the NWS weather report pages, without �rst building
extractors for each of the �elds of those pages.

The wrapper construction e�ort in the ARIADNE project [5, 20] has also demonstrated the importance and
feasibility of building a wrapper generator. The focus of their work is very similar to ours, i.e., semi-automatic
generation of wrappers for the web sources to be integrated by a mediator or a software agent. However, they
follow a very di�erent approach that uses LEX to �nd tokens of interest from a source page and uses YACC to
de�ne and extract the nesting structure of the page. However, the current version of the ARIADNE system does
not handle the web pages that contain tables such as the NWS weather report site. Also it does not provide
feedback-based learning capability to enhance the robustness of generated wrappers in handling inconsistencies
across multiple-instance pages.

A recent project W4F [28] at University of Pennsylvania produces a toolkit to help wrapper developers to develop
wrappers. The main feature of W4F includes the use of the DOM object model instead of the grammar-based
approach as in JEDI [18] and the use of the Nested String Language (NSL) to encode the information extraction
rules.

Despite the commonality with other approaches such as encoding extraction rules in description �les and using
heuristics based on particular HTML tags, our wrapper generation approach di�ers markedly from the existing
approaches. The most distinct feature is its unique two-phase code generation framework. The two-phase code
generation approach presents a number of advantages over existing approaches. First, it provides a user-friendly
interface program to allow users to generate their information extraction rules with a few clicks. Second, it
provides a clean separation of the information extraction semantics from the generation of procedural wrapper
programs (e.g., Java code). Such separation allows new extraction rules to be incorporated into a wrapper
program incrementally. Third, it facilitates the use of the micro-feedback approach to revisit and tune the
wrapper programs at run time. In addition, XWRAP explicitly separates tasks of building wrappers that are
speci�c to a Web source from the tasks that are repetitive for any source, and uses a component library to provide
basic building blocks for wrapper programs.

In addition, a variety of research has been devoted to issues in directly querying semi-structured data from web
sources in a database-like fashion [1, 6, 10, 21, 26]. These e�orts are concerned with issues such as the development
of data models and query languages for semi-structured data, de�ning formal semantics for such query languages,
and e�ciently implementing these languages.

18

www.manaraa.com

Other interesting work includes WebL [19] and WIDL [3], o�ering some advanced features for the web document
retrieval, and W4F [28], o�ering an interesting web wrapper factory to extract information using nested string
lists as the target structure. In addition, Web-OQL [4] and XML-QL [11] provide queries with variable binding,
and o�er interesting techniques for implementing functional wrappers on top of the XWRAP data wrapper.
Other interesting e�ort in using declarative approaches to information extraction includes QEL [15] and XML-
Pointer [31], although their current developments are limited to simple constructs of the web pages.

There are some commercial wrapping services available on the Internet, such as Junglee (bought by Amazon.com),
Jango (bought by Excite), and mySimon. They are able to extract information from large HTML sources.
However, their technology is considered a business asset and proprietary, consequently unavailable to the world
at large.

7 Conclusion

We have presented our approach for semi-automatically generating wrappers for Web information sources. There
are three main contributions of the paper. First, we develop a two-phase code generation methodology and a
set of mechanisms for semi-automatic construction of XML-enabled wrappers. Second, we explicitly separate
tasks of building wrappers that are speci�c to a Web source from the tasks that are repetitive for any source,
and provide a component library to host basic building blocks of wrapper programs. Third, XWRAP provides
inductive learning algorithms that derive or discover wrapper patterns by reasoning about sample pages or sample
speci�cations. The ideas and results of the XWRAP system appear to be e�ective for many semi-structured web
sources. However, we need more advanced wrappers to be able to broaden the scope of sources we can generate
wrappers for. Currently we are working on enhancing the generation of data wrappers with the capability of
handling complex tables that have more than two-dimension and �ner grained queries that have complex search
conditions. We are also interested in mechanisms for enhancing the reliability of the wrappers generated.

Our future work will involve three distinct aspects of the system. The �rst aspect focuses on providing better tools

to assist user in choosing sample Web pages from the given Web site and to incorporate various machine learning

algorithms to de�ne more robust information extraction rules. The second aspect is to enrich the XWRAP

information extraction rule language and the component library with enhanced pattern discovery capability

and various optimization considerations. The third aspect concerns the incorporation of Microsoft repository

technology [8, 9, 7] to handle and manage the versioning issue and the metadata of the XWRAP wrappers.

Furthermore, we are interested in investigating issues such as whether the ability of following hyperlinks should

be a wrapper functionality at the level of information extraction or a mediator functionality at the level of

information integration.

References

[1] S. Abiteboul, D. Quass, J. McHugh, J. Widom, and J. Weiner. The lorel query language for semi-structured
data. In Journal of Digital Library, 1998.

[2] B. Adelberg. Nodose - a tool for semi-automatically extracting structured and semi-structured data from
text documents. ACM SIGMOD, 1998.

[3] C. Allen. WIDL: Application Integration with XML. World Wide Web Journal, 2(4), 1997.

[4] G. Arocena and A. Mendelzon. WebOQL: Restructuring Documents, Databases, and Webs. Proc. ICDE'98,
Feb., 1998.

[5] N. Ashish and C. A. Knoblock. Semi-automatic wrapper generation for internet information sources. In
Proceedings of Coopis Conference, 1997.

19

www.manaraa.com

[6] P. Atzeni and G. Mecca. Cut and paste. Proceedings of 16th ACM SIGMOD Symposion on Principles of
Database Systems, 1997.

[7] T. Bergstraesser, P. Bernstein, S. Pal, and D. Shutt. Versions and workspaces in microsoft repositorys. ACM
SIGMOD, 1999.

[8] P. Bernstein. Microsoft repository. VLDB'97 Tutorial and ACM SIGMOD'96 Tutorial, 1997.

[9] P. Bernstein, T. Bergstraesser, J. Carlson, S. Pal, P. Sanders, and D. Shutt. Microsoft repository version 2
and the open information model. Information Systems 24(2), 1999.

[10] P. Buneman, S. Davidson, and G. H. D. Suciu. A query language and optimization techniques for unstructured
data. In Proceedings of ACM SIGMOD Conference, 1996.

[11] A. Deutsch, M. Fernandez, D. Florescu, A. Levy, and D. Suciu. XML-QL: A Query Language for XML.
http://www.w3c.org/TR/1998/NOTE-xml-ql-19980819, 1998.

[12] R. Doorenbos, O. Etsioni, and D. S. Weld. A scalable comparison-shopping agent for the world-wide-web.
In Proceedings of the First Int. Conference on Autonomous Agents, 1997.

[13] R. Doorenbos, O. Etzioni, and D. Weld. A scalable comparison-shopping agent for the world wide web.
Proceedings of Autonomous Agents, pages 39{48, 1997.

[14] H. Garcia-Molina and et al. The TSIMMIS approach to mediation: data models and languages (extended
abstract). In NGITS, 1995.

[15] J. Gruser, L. Raschid, M. Vidal, and L. Bright. A Wrapper Generation Toolkit to Specify
and Construct Wrappers for Web Accessible Data Sources. ftp://ftp.umiacs.umd.edu/pub/louiqa/
BAA9709/PUB98/1CoopIS98.ps, 1998.

[16] J. Hammer, M. Brennig, H. Garcia-Molina, S. Nesterov, V. Vassalos, and R. Yerneni. Template-based
wrappers in the tsimmis system. In Proceedings of ACM SIGMOD Conference, 1997.

[17] J. Hammer, H. Garcia-Molina, J. Cho, R. Aranha, and A. Crespo. Extracting semi-structured data from the
web. Proceedings of Workshop on Management of Semi-structured Data, pages 18{25, 1997.

[18] G. Huck, P. Fankhauser, K. Aberer, and E. J. Neuhold. Jedi: Exchanging and synthesizing information from
the web. Coopis, 1998.

[19] T. Kistlera and H. Marais. WebL: a Programming Language for the Web. http://www.research.digital.com/
SRC/WebL/index.html, 1998.

[20] C. A. Knoblock, S. Minton, J. L. Ambite, N. Ashish, P. J. Modi, I. Muslea, A. Philpot, and S. Tejada.
Modeling web sources for information integration. In Proceedings of AAAI Conference, 1998.

[21] D. Konopnicki and O. Shemueli. W3qs: A query system for the world wide web. In Proceedings of the Very
Large Databases Conference, 1995.

[22] N. Kushmerick. Wrapper induction for information extraction. In Ph.D. Dissertation, Dept. of Computer
Science, U. of Washington, TR UW-CSE-97-11-04, 1997.

[23] N. Kushmerick, D. Weil, and R. Doorenbos. Wrapper induction for information extraction. In Proceedings
of Int. Joint Conference on Arti�cal Intelligence (IJCAI), 1997.

[24] L. Liu, C. Pu, and W. Tang. Continual queries for internet-scale event-driven information delivery. IEEE
Knowledge and Data Engineering, 1999. Special Issue on Web Technology.

[25] L. Liu, C. Pu, W. Tang, J. Biggs, D. Buttler, W. Han, P. Benningho�, and Fenghua. CQ: A Personalized
Update Monitoring Toolkit. In Proceedings of ACM SIGMOD Conference, 1998.

[26] A. O. Mendelzon, G. Mihaila, and T. Milo. Querying the world wide web. In International Conference on
Parallel and Distributed Information Systems (PDIS), 1996.

[27] D. Raggett. Clean Up Your Web Pahes with HTML TIDY. http://www.w3.org/People/Raggett/tidy/, 1999.

20

www.manaraa.com

[28] A. Sahuguet and F. Azavant. WysiWyg Web Wrapper Factory (W4F). Proceedings of WWW Conference,
1999.

[29] S. Soderland. Learning to extract text-based information from the world wide web. Proceedings of Knowledge
Discovery and Data Mining, 1997.

[30] W3C. Reformulating HTML in XML. http://www.w3.org/TR/WD-html-in-xml/, 1999.

[31] WWWC. XML Pointer Language. http://www.w3.org/TR/1998/WD-xptr-19980303, 1998.

21

www.manaraa.com

Appendix A

......

<Maximum and Minumum Temperatures>

<Description>Maximum and Minimum Temperatures</Description>

<Maximum and Minimum Temperatures Child>

<Maximum Temperature>

<Description>MaximumTemperature F(C)</Description>

<Value>82.0(27.8)</Value>

</Maximum Temperature>

<Minimum Temperature>

<Description>MinimumTemperature F(C)</Description>

<Value>62.1(16.7)</Value>

</Minimum Temperature>

<TD>

<Description></Description>

<Value>In the 6 hours preceding Oct 29, 1998 - 06:53 PM EST / 1998.10.29 23:53 UTC</Value>

</TD>

</Maximum and Minumum Temperatures Child>

<Maximum and Minimum Temperatures Child>

<Maximum Temperature>

<Description>MaximumTemperature F(C)</Description>

<Value>80.1(26.7)</Value>

</Maximum Temperature>

<Minimum Temperature>

<Description>MinimumTemperature F(C)</Description>

<Value>45.0(7.2)</Value>

</Minimum Temperature>

<TD>

<Description></Description>

<Value>In the 24 hours preceding Oct 28, 1998 - 11:53 PM EST / 1998.10.28 0453 UTC</Value>

</TD>

</Maximum and Minumum Temperatures Child>

</Maximum and Minumum Temperatures>

......

Figure 14: A fragment of the XML document for the NWS Savannah weather report page

22

